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Abstract 

This paper reports on the experimental verification of 
the ability of IDEA (Intelligent Distributed Execution 
Architecture) effectively operate at multiple levels of 
abstraction in an autonomous control system.  The basic 
hypothesis of IDEA is that a large control system can be 
structured as a collection of interacting control agents, 
each organized around the same fundamental structure.  
Two IDEA agents, a system-level agent and a 
mission-level agent, are designed and implemented to 
autonomously control the K9 rover in real-time.  The 
system is evaluated in the scenario where the rover must 
acquire images from a specified set of locations.  The 
IDEA agents are responsible for enabling the rover to 
achieve its goals while monitoring the execution and 
safety of the rover and recovering from dangerous states 
when necessary.  Experiments carried out both in 
simulation and on the physical rover, produced highly 
promising results. 
 

1. Introduction 
Robotics space exploration requires autonomous 

control. While executing critical maneuvers or moving on 
rugged terrains the speed of the needed control loops  does 
not allow closing the loop with ground control due to 
large communication delays Limited communication 
bandwidth and high personnel costs also increase the time 
and cost for recovering from on-board anomalies if large 
ground control crews are involved. The need to increase 
science output and operations safety while reaching for 
more ambitious and complex exploration goals strongly 
calls for more autonomous robots. 

Some of the most autonomous space systems that have 
flown [9] or are preparing to fly [4] employ on-board 

automated planning systems. A planner receives goals 
either from the ground or from on-board task experts. The 
planner has access to a declarative model describing the 
necessary conditions that have to be satisfied in a plan in 
order to correctly achieve a goal and execute any 
supporting activities. On the basis of the model, the 
planner uses a standard planning engine, i.e., a search 
procedure that efficiently explores a large number of 
possible ways to concatenate goals and supporting 
activities. This is done within the temporal and resource 
constraints intrinsic in the problem. Once a plan has been 
generated, it is read by a simple interpreter that issues 
appropriate commands to the performing system and 
monitors execution feedback returning from it. 

Plan driven control is attractive in several respects. 
Perhaps the most important is the high level of assurance 
that it can deliver. The declarative model is essentially a 
constraint-based formal specification of the possible 
control behaviors of the system. In traditional flight 
software this specification is typically manually translated 
into the running code. Plan-based control instead 
eliminates this error-prone and difficult-to-validate 
development phase. Provided that the model correctly 
captures the physics of the devices and the desired control 
laws, the planning engine will guarantee the correctness 
of the control software. Of course, this argument relies on 
achieving a high level of assurance for the search engine. 
But reuse of the search engine without change across 
several applications subjects it to several cycles of 
rigorous testing, intrinsically increasing its reliability. 
Moreover, engine reuse also make it economically 
feasible to use high-cost/high-reliability validation such 
as application of formal methods [6]. 

However, so far planners are rarely used in on-board 
control systems for robots. When they are used, the 
planners are typically relegated to optimizing high-level 



task allocation over extended horizon while lower-level 
control has been achieved with procedural execution [12] 
or behavior-based control [2]. This situation is partly due 
to a reaction to early attempts to build plan-based mobile 
control systems [5] where planning was identified as a 
principal obstacle to the achievement of reactive 
behaviors. An important question, therefore, is whether it 
is possible to build planner-based core controllers that are 
fast enough to satisfy the reactive requirements of robotic 
controllers while fulfilling the high-assurance promise of 
plan-based computation. 

This paper describes preliminary work in this direction. 
We describe the design and implementation of a rover 
controller that uses planning as the core reasoning engine 
of a real-time executive. The control system has been 
demonstrated on the K9 rover testbed (Figure 1) [1] at the 
NASA Ames Research Center. The tasks performed 
include some simple mission scenarios requiring the rover 
to take pictures with the on-board camera and recovering 
from simple faults such as excessive tilt and roll. The 
on-board executive was implemented using a 
general-purpose, planner-based distributed agent 
architecture, the Intelligent Distributed Execution 
Architecture (IDEA). It demonstrates IDEA’s viability for 
the implementation of real-time robotic controllers. 

This paper is organized as follows. Section 2 gives a 
brief overview of IDEA agent architecture and describes 
how planning is integrated at the core of the execution 
cycle. Section 3 describes the test scenarios run on the K9 
rover and how the scenario is modeled by separate IDEA 
agents. Section 4 reports experimental results while 
section 5 concludes the paper and discusses future work. 

 

Figure 1 The K9 Rover 

2. Structure of IDEA 
The most common organizational structure of 

autonomous control systems that have been used in 
practical applications is hybrid multi-layered, with several 
technologically diverse layers cooperating to achieve the 
robot’s desired behavior. In mobile robotics, for example, 
a common layered controller separates between a 
low-level functional layer, often organized as a collection 
of controllers communicating according to a static routing 
map, and a high level decision layer, typically centered 
around a procedural execution system [10]. Technological 
diversity among layers is problematic since each layer’s 
machinery is typically described with a different 
computational model and supports different programming 
languages and methods without a clear mapping between 
them. This is problematic for two reasons. Firstly, it 
increases the cost and difficulty of building complex 
autonomous controllers since a roboticist is supposed to 
thoroughly understand each computational model to be 
able to effectively program in it. Secondly, it increases the 
cost of validation and decreases the reliability of the 
software, since often the same information may need to be 
represented in two different ways in different layers. 
Moreover, lack of uniformity between layers increases the 
difficulty of using automated validation systems. 

The Intelligent Distributed Execution Architecture 
(IDEA) postulates a different approach to the organization 
of complex autonomous controllers. The basic hypothesis 
is that a large control system can be structured as a 
collection of interacting control agents, each organized 
around the same fundamental structure. Each atomic 
IDEA agent is structured in the same way and uses a 
model-based reactive planner as its core engine for 
reasoning. Each agent is required to operate with 
real-time guarantees. In fact, each agent has an intrinsic 
execution latency, a time quantum within which all 
computations needed to execute a “sense/plan/act” cycle 
must complete, otherwise the IDEA agent is declared 
faulty and must be taken off-line. The existence of an 
execution latency allows bridging the perceived gap 
between AI-based methodologies to control and 
traditional control theory. In fact, the latency can be 
directly mapped to a controller’s sampling rate, the 
fundamental measurement of responsiveness in 
traditional control theory. 



Figure 2 describes the core structure of an atomic IDEA 
agent. 
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Figure 2 Structure of an IDEA agent 
The agent communicates with external systems through 

a set of goal registers. At any point in time a register must 
contain an active goal describing the “interaction 
contract” with an external system. The content of the 
register always takes the form P(i→ s) where P is the 
name of a procedure, i is a (possibly empty) vector of 
input values and s is a (possibly empty) vector of return 
status parameters. When the goal is established, all 
arguments in i must be bound to some value i0 within the 
domain of possible values for i. The contract terminates 
when either s is bound to a specific value, due to sensory 
feedback, or a timer associated to <P, i0> expires. The 
latter allows procedures to be terminated by pre-emption 
in cases such as lack of response within a maximum 
allowable wait time. A subsystem interacting with the 
IDEA agent can be either controlling or controlled. It is 
controlled if the IDEA agent initially sets the value of the 
goal register with a new procedure and then waits for the 
controlled subsystem to set the status s or for the 
procedure timer to expire. It is controlling in the 
symmetrical case. A subsystem can be both controlling 
and controlled by interacting with the IDEA agent with 
different registers with different communication 
directions. Subsystems can be other IDEA agents or 
legacy software and hardware devices whose incoming 
and outgoing communications can be mapped into a finite 
set of goal registers maintained by the IDEA agent. The 
compositionality of the communication infrastructure 
allows the implementation of arbitrary distributed 
multi-agent control system structures. 

Each goal register must behave according to a “timeline 

semantic”. This means that at any point in time all goal 
registers must contain an active procedure. This, of course, 
cannot be satisfied when a procedure returns or must be 
terminated. In this case the agent goes through an 
execution cycle whose goal is to eliminate expired or 
returned procedures from goal registers and replace them 
with new procedures. The agent must perform this 
activity with a strict real-time guarantee, within the 
execution latency associated with the agent. The shorter 
the execution latency, the faster the IDEA agent can close 
the control loops in which it is involved. 

The module with the responsibility of starting and 
possibly aborting an execution cycle is the Plan Runner. 
The plan runner can only be activated at discrete times, 
synchronously with the agent’s internal clock. The clock’s 
granularity is the agent’s execution latency. If a sensor 
value is received at time t, this will cause an execution 
cycle to start at time kλ where λ is the agent’s latency and 
(k-1) λ ≤ t < kλ. Moreover, if the agent decides to start a 
new procedure during an execution cycle starting at time 
kλ, the procedure will be loaded in the goal register at a 
time τ, where kλ ≤ τ < (k+1) λ. Note therefore that in the 
worst case an IDEA agent’s responsiveness, i.e., the 
maximum temporal distance between a stimulus (sensor 
value) and its response (the message announcing to the 
controlled agent that it should start a new procedure), is 
always 2λ. This permits precise quantification of the 
reactivity of a control agent, a measure that is usually 
elusive in control approaches based on planning or other 
Artificial Intelligence techniques. 

The core reasoning in an IDEA agent is performed by 
the Reactive Planner. During an execution cycle, the 
reactive planner has the responsibility of determining the 
procedures with which expired goal registers should be 
loaded. The reactive planner explicitly represents 
histories for the agent’s timelines in a Plan Database. 
These describe both past and future contents of each goal 
register (either incoming or outgoing) and auxiliary state 
variables possibly describing non-observable state 
variables in controlled/controlling systems and internal 
state maintained by the IDEA agent to implement its 
control law. In the reference implementation of an IDEA 
agent, the planner uses a heuristic search procedure 
implemented through a standard search engine and guided 
by search control rules implemented in an appropriate 
search control language associated with the engine. The 



planner conducts the search by continuously consulting a 
Model, i.e., a description of how procedures can follow 
each others on timelines and hence in goal registers. The 
model also describes in which way start and end of 
procedures can synchronize in all legal plans (see Section 
3.3 for an example). By directly interpreting a declarative 
model, we believe that an IDEA agent can achieve higher 
levels of assurance than procedural approaches to plan 
execution and control. 

The IDEA architecture supports several mechanisms 
for addressing the “planning bottleneck” problem, the 
problem that has led to the summary dismissal of planning 
as a core control technology in the past. First of all, note 
that the architecture assumes the existence of a central 
plan database for each agent. It is possible for an agent to 
have several processes, besides the reactive planner, 
manipulate the plan database. Some of these processes 
can have the responsibility to build sections of plans over 
extended periods of time in the future, possibly with the 
goal of “optimizing” some quality criteria. These 
processes operate at lower priority than the reactive 
planner and are controlled by the plan runner through goal 
registers, i.e., with the same coordination protocol used 
with external systems. Therefore, as long as the planning 
horizon over which the deliberative planner is working 
never intersects the current execution time, deliberative 
planning can operate in parallel with reactive execution 
and does not affect the reactivity of the agent. The 
reactive planner itself may want to operate over planning 
horizons that are longer than the minimum possible one 
(one latency interval starting at the current execution 
time). However, the length of this horizon and the 
complexity of the model that the reactive planner must 
use determine the worst case cost for solving a reactive 
planner problem and therefore determine the agent’s 
latency. Vice versa, if the latency is bound by some 
characteristics of the controlled subsystems, one can 
deduce strict limits to the planning horizon as a function 
of the complexity of the model. Reducing the planning 
horizon will cause the agent to be more reactively myopic 
which may require compiling more information in the 
“control law” timelines in the model or require more 
extensive deliberative planning in advance (e.g., 
explicitly representing contingency branches) that allow 
the reactive planner simply to select an action among 
those cached in the plan database by the deliberative 

planner rather than having to synthesize one from scratch 
every time. 

Another way to tune the performance of an IDEA agent 
is to select a plan database/planning technology with the 
appropriate expressivity/performance tradeoff. For 
example, when it is important to reason about time, 
resources and bound uncertainty, then it could be 
appropriate to use constraint-based temporal planning 
technologies such as the one employed in the Remote 
Agent on-board planner. However, if the model matches 
an asynchronous discrete event control system, then a 
propositional representation and fast propositional 
incremental planning may be better suited to the task and 
achieve better performance. The IDEA architecture 
supports the use of different planning technologies by 
providing a standardized interface, the Plan Service Layer, 
between the planner and the goal register. Different 
planning technologies can be used as long as they can 
support a standard set of methods provided by the plan 
service layer. Also, an appropriate mapping must be 
defined between the modeling infrastructure of IDEA and 
the internal modeling needed by different plan database 
technologies. 

In summary, the IDEA architecture provides an 
implementation of a set of basic services for building 
agents (goal registers and their input/output 
communication protocols, the plan runner, the plan 
service layer, the model) that we believe will be 
applicable across a wide variety of agents at multiple 
levels of abstraction in an autonomous control system. 
The proof of whether this goal can be achieved or not 
depends both on theoretical analysis and on experimental 
validations, such as the one reported in this paper. 

3. A rover controller using IDEA 

We have designed and implemented an IDEA controller 
for the K9 rover (Figure 1). The K9 rover is a 
six-wheeled, solar-powered rover complete with a 
manipulator. K9’s mechanisms are a clone of those of the 
"FIDO" (Field Integrated Design and Operations) rover 
developed at JPL[11]. The rover's avionics, 
instrumentation, and its autonomy software were 
developed at NASA Ames.  
The rover carries a variety of instruments on board, 
including a compass, an inertial measurement unit and 



three pairs of monochromatic cameras (WideEye and 2 
pairs of HazCams) used for navigation and instrument 
placement. Other instruments are mounted on an 
articulated arm that allows their precise placement for 
contact science. The WideEye stereo pair consists of a 
stereo pair of CMOS cameras mounted on a 10.93 cm 
baseline. The individual cameras consist of analog (RS170) 
output CMOS cameras with a 510x492 pixel resolution. 
Like the WideEye cameras, the front and rear HazCam 
stereo pairs consist of stereo pairs of CMOS cameras 
mounted on a 10.8 cm baseline. The individual cameras 
consist of analog (RS170) output CMOS cameras with a 
510x492 pixel resolution.  The rover also carries a pair of 
high-resolution, color stereo cameras (HawkEye), which 
consists of a stereo pair of high resolution multi-spectral 
cameras spaced on a 27.9 cm baseline. The individual 
cameras utilize a 960x800 CMOS detector with 10 
bits/pixel resolution and square pixel format, and the 
CHAMP, an arm-mounted, focusable microscopic camera 
developed at the University of Colorado, Boulder.  The 
WideEye and HawkEye camera pairs are fitted on a PanTilt 
unit. 

In this section, we first present the structure of the 
IDEA controller and its mapping to low-level rover 
control software. We then describe the test scenario and 
the models used by each IDEA agent to support this 
application. The scenario and the models have been tested 
in simulation and on-board the rover. Some results are 
discussed at the end of this section. 

3.1. Structure of the IDEA controller 

������� � depicts the mapping between the IDEA 
controller and the K9 controllers. The K9 controllers 
provide a functional layer of capabilities used by the 
IDEA controller. These capabilities include low-level 
commands – for instance the simple pan/tilt or camera 
commands – as well as some more complex behavioral 
commands, such as “drive to a position”. Query functions 
can be used to obtain sensory information such as the 
rover’s location, pitch/roll/yaw angles and the internal 
bay’s temperature. The overall control software is 
composed by three subsystems organized in a 
three-layered hierarchy. The top layer of the hierarchy 
includes two IDEA agents: the System Level and Mission 
Level agents. The bottom layer interacts with the System 
Level agent according to the IDEA inter-agent protocol, 

although it is not implemented as an IDEA agent. The 
mapping is obtained through the K9Relay which behaves 
as a parser/decoder, translating the goals sent by the 
System Level agent into the corresponding commands or 
information requests to the K9 controllers. We used 
CORBA as the underlying messaging infrastructure used 
to exchange goals and execution feedback between the 
IDEA agents and to exchange messages between the K9 
controllers and the K9Relay. 

3.2. Scenario 

The IDEA control system has been tested on the 
following mission scenario. The rover must acquire 
images from several specified locations. A set of goals is 
sent to the rover, each consisting of a location and 
parameters for the camera and the pan/tilt unit. The rover 
decides in which order to accomplish these goals, 
monitors their execution and recovers from dangerous 
states. 

 
Figure 3 Mapping the IDEA agents to K9 

Responsibilities have been assigned to the IDEA agents 
as follows. The Mission-Level agent receives goals (e.g. 
from the ground controllers) and decides on their best 
ordering using a deliberative planner. Execution of the 
plan at the mission-level sends one goal at a time to the 
System-Level agent that is responsible for expanding 
lower-level activities, monitoring execution and planning 
recovery actions if necessary. 

The System-Level agent is responsible for monitoring 
rover safety while executing its plan. In particular, if 
safety limits for tilt and/or roll angles are exceeded, the 
system-level agent immediately stops the nominal 
execution, orders the rover to backup, executes a turn in 
place by a set angle, and resume execution of appropriate 



actions to achieve the goal. All of this is achieved through 
local reactive planning and plan execution. 

 

3.3. Model description 

The underlying planning technology used in both IDEA 
controllers is the EUROPA planning technology [7], a 
direct descendent of the Planner/Scheduler that was part 
of the Remote Agent [8]. The modeling language used for 
the agent models is the Domain Description Language 
(DDL) supported by EUROPA. Thus, designing a model 
is equivalent to defining a set of parallel timelines, sets of 
procedure types that can appear on each timeline and a set 
of constraints for each time interval over which a 
procedure can extend: temporal constraints between 
procedure intervals (also called compatibilities), duration 
constraints and parametric constraints that tie together all 
token variables (including the interval start time, end time, 
duration and input and status argument of the procedure). 

Search control is implemented through heuristic rules 
used both by the reactive and deliberative planner. The 
rules prioritize subgoals that the planner should work on 
at each step of the search and prioritizes slots on the 
timelines into which subgoals could be inserted. For the 
K9 controller, however, only a few heuristics were needed. 
They were used to prevent the Reactive Planner from 
trying to bind specific parameters, mainly the parameters 
corresponding to the output arguments and return status, 
since their values are determined by the subsystem. Note 
that in principle it would be possible for the reactive 
planner to “guess” the return values of procedures. This is 
particularly important if the planner does look-ahead a 
few steps in the future or needs to develop contingent 
plans. In this case, the planner value of the return 
arguments would be checked with respect to the one 
actually obtained from the subsystem. If they do not 
match, then the reactive planner needs to modify the plan 
according to the value returned from the subsystem which 
is the true sensor value. Our controller, however, was 
simple enough that the planner needed only to determine 
the next action without look-ahead and therefore could 
afford to leave the value of the return parameters unbound. 
This behavior is consistent with typical approaches to 
procedural execution. 
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������� 	 depicts the interactions between the 

timelines defined in the System-Level’s model. There are 
four types of timelines: 

�� The Goal timelines contain the goal sent by the 
Mission-Level and manage its completion. One 
of these timelines is shared with the 
Mission-Level agent. 

�� One timeline has been defined for each K9 
component controlled by the agent: Location, 
Camera, Pan/Tilt unit, Fans. These Executable 
timelines contain tokens corresponding to the 
actual commands sent to the K9 controllers. For 
each command, a completion status is returned 
by the K9 controllers. 

�� To allow the monitoring of the rover safety, one 
Data-Polling and Alarm Detection timeline is 
defined for each monitored characteristic 
(pitch/roll angles, temperature, power…). These 
timelines contain tokens corresponding to 
information requests to the rover. For instance, at 
each agent clock tick, a PitchMeasure 
(→ ?alarm  ?pitch, ?pitch_rcvd) goal is sent. 
The parameter ?pitch is a status value returning 
the sensed pitch value, ?pitch-rcvd an additional 
status parameter that determines whether the 
token terminated because a value was received 
for ?pitch or because the token was pre-empted, 
and ?alarm is another Boolean return status 
parameter. ?alarm and ?pitch are linked by a 
constraint that sets ?alarm to True if  ?pitch is 
greater than a predefined threshold. Once the 



Plan Runner has received and posted the value 
of ?pitch in the plan database, the Reactive 
Planner applies the constraint, and a possible 
alarm is detected. 

�� For error recovery two other Monitoring 
timelines have been added to manage the 
different alarms and recovery steps. These 
timelines are especially useful with regard to the 
motion of the rover, as different motion alarms 
can occur at the same time and during the 
recovery actions. One timeline (MotionHealth) 
gives the state of the rover at each agent clock 
tick: if there is an alarm, it identifies what type of 
alarm it is. Moreover, priorities can be defined 
between the different alarms. Each alarm 
corresponds to a specific sequence of recovery 
steps. The other timeline (MotionMonitor) is 
useful to manage the next recovery step to 
execute, depending on the evolution of the state 
of the rover. By means of compatibilities, the 
Reactive Planner will then insert the 
corresponding command tokens on the 
Executable timelines.  

 

�������� gives an illustration of a simpler monitoring 
with an example of compatibilities for the token 
TempReadCompare(→ ?state_fan?temp,?temp_rcvd) of 
the timeline TempMeasure. The temperature alarm 
detection is similar to the pitch case. Once the value of the 
temperature (output value ?temp) has been received and 
posted by the plan runner (?temp_rcvd  is set to True), the 
reactive planner applies the following constraints :  the 
parameter-function new_fan_state() detects a possible 
alarm and sets the boolean ?state_fan to True if necessary, 
then the compatibility meets inserts a command token 
DeviceSetFanState(?state_fan→) on the Executable 
timeline Fans. During the same control cycle a goal is sent 
to the K9Relay that translates into a direct command to 
the appropriate K9 low-level controller. This command 
finally turns the fan on. Note that DeviceSetFanState has 
an empty status vector. This is because we assume that the 
command will be executed in open loop without direct 
sensory feedback. 

 

 (Define_Compatibility 
   (SINGLE((Rover_Class TempMeasure_SV)) 
       ((TempReadCompare(→?state_fan ?temp True)))) 
:duration_bounds [*temp_freq* *temp_freq*] 
:parameter_functions 
   (new_fan_state(*tempthreshold* ?temp ?state_fan)) 
:compatibility_spec 
   (AND 

   (meets (SINGLE ((Rover_Class Fans_SV))  
                   ((DeviceSetFanState (?state_fan→)))))))) 

Figure 5 Example of compatibility for the token 
TempReadCompare 

The system-level model contains only forward 
chaining compatibilities, since it is designed for a purely 
reactive agent, planning over an horizon covering only 
one execution latency ahead in reaction to new sensory 
information or new goals.  

As stated before, the Mission Level agent receives a set 
of goals from the ground controllers. It uses deliberative 
planning to find the best ordering of the goals and sends 
one goal at a time to the System Level agent for expansion 
and execution. The Mission Level monitors the 
completion of each goal and can replan if necessary  

The underlying model contains three types of timelines. 
A set of Internal timelines is used by the deliberative 
planner to find the ordering of the goals. Deliberative 
planning is managed by means of a specific Planner 
timeline that contains Planning tokens which parameters 
specify, notably, the start and end times of the planning 
horizon. The execution of such a token triggers the 
corresponding planning process. Finally, the plan 
resulting from deliberative planning (i.e. a sequence of 
goals) is put on a Goal timeline. This timeline is shared 
between the two agents. Its execution by the Reactive 
Planner at the Mission Level communicates one goal at a 
time to the System Level and monitors the completion 
status returned back. 

The System Level has been tested on board the K9 
rover (with one goal sent by the Mission Level from a 
distant machine). Deliberative planning and interaction 
between the two agents have been tested in simulation. 

4. Results 
During the tests on board, the rover has successfully 

accomplished its goal while correctly responding to 



successive alarms. We have mainly monitored two types 
of data: the evolution of the duration of the plan runner 
cycle and the CPU used by the IDEA agent. The IDEA 
agent can be CPU consuming, especially during the phase 
of deliberative planning at the mission level. The duration 
of the plan runner cycle is decisive since it should not 
exceed a specified latency corresponding to the control 
rate. It mainly depends on the number of decisions made 
by the reactive planner during a cycle. The first 
experiments pointed out an undesirable increase of the 
cycle duration with time. This increase was due to the fact 
that the plan database grows drastically with time, the data 
polling for instance implies the insertion of tokens at each 
cycle. Thus each decision made by the reactive planner 
takes more and more time due mainly to propagation of 
temporal and parametric constraints throughout the large 
plan database.  

This problem was solved by deleting past actions as 
one goes along. Since the system level agent is purely 
reactive, it only needs to know about the currently 
executed tokens and the previous ones on each timeline. 
�������� and �������� show the new results obtained in 
simulation. We observe that the CPU usage never exceeds 
30 % (whereas 90% of CPU usage can occur during the 
deliberative planning). The duration of the cycle is stable, 
the few peaks correspond to cycles where more decisions 
were made (reception and expansion of a goal, reaction to 
an alarm). The system-level agent achieves a 2Hz control 
rate on a 300MHz Pentium, which is adequate for 
slow-moving planetary rovers.� 
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Figure 6 System Level agent: evolution of CPU usage 
(%) with time (s) 
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Figure 7 System Level agent: evolution of Plan 
Runner cycle duration (s) with time (s) 

It should be noted that the model has been designed so 
that no backtracking is needed (and almost no heuristics). 
Further work should be done to compare these results 
with a less thorough but less heavy model and 
chronological backtracking. 
�

5. Conclusions and Future Work 
In this paper we reported on preliminary experiments 

toward demonstrating the practical feasibility of a 
planner-based, multi-agent architecture for controlling 
mobility and remote sensing of a planetary rover. Much 
work remains to be done. To be viable for the limited 
computational resources available in flight systems, 
IDEA agents need to as streamlined as possible. Any 
overhead in interpreting the model and searching for a 
reactive plan should be eliminated. We believe that much 
of this can be achieved by appropriately tuning the 
planner and increasing the efficiency of the planning 
technology used in each IDEA agent. In some cases, 
however, a purely search-based, “interpreted” approach 
may still be too slow. Therefore we plan to explore the 
feasibility of compilation schemes in which procedural 
executives satisfying the IDEA protocol are automatically 
generated from agent models. In this case the planner will 
still have a central role during system validation and, we 
believe, during the compilation phase. An interesting 
question that we will explore is characterizing the 
space/time tradeoff between a large but fast procedural 
expansion versus a more compact model encoding that is 
more slowly interpreted by a planner at run time. 
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